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Abstract—Generalized matrix multiplication (GEMM) involves
computing the matrix product of any two matrices with ap-
propriate dimensions. Specifically, GEMM doesn’t enforce rules
on the structure of the entries of the input matrices, such
as requiring them to be diagonal, symmetric, or any other
special case. Similarlyy, GEMM doesn’t require the matrices
to be of a certain density or sparsity. GEMM is utilized
in many practical applications including deep learning with
convolutional networks, computer vision, and large-scale signal
processing. The advantage of a generalized matrix multiplication
algorithm is the ability to process big matrix datasets through
efficient memory access techniques with a lower requirement for
temporary storage than other methods. We designed a parallel
divide and conquer general matrix multiplication (PDCGMM)
algorithm that performs GEMM comparably for both sparse and
dense matrices. PDCGMM also takes advantage of the parallel
processing ability of GPUs by using the Computer Unified Device
Architecture (CUDA) and efficient usage of GPU memory. We
experimented with PDCGMM on five matrices with different
sizes and densities to evaluate the algorithm’s performance.
PDCGMM demonstrated 5-6 times speedup over NumPy’s built-
in GEMM algorithm for large matrices and 70-90 times speedup
for matrices that could be stored entirely on GPU memory.

Index Terms—matrix multiplication, divide and conquer,
CUDA

I. INTRODUCTION

One of the most ubiquitously used operations in computer
graphics, network theory, science, and engineering is matrix
multiplication. Despite it’s prolific use, it is a heavily complex
and time-consuming operation as the sizes of matrices used
can grow rapidly out of control. It is no wonder that matrix
multiplication is the focus of so many research papers, each
seeking to squeeze every bit of optimization out of it. A large
portion of matrix multiplication research has concentrated on
algorithms tailored to specific components of matrix multi-
plication such as size, sparsity, and density. While Tomikj &
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Gusev [13], Arrigoni et al. [1] and Ishiguro et al. [5] influenced
our decision to take a concurrent approach to our algorithm, a
multitude of related work [4] [12] [3] [8] found a general,
scalable, approach lacking. In light of this, a generalized
matrix multiplication algorithm that is simultaneously scalable
and highly optimized is the approach we developed when
designing our Parallel Divide and Conquer Algorithm for
Generalized Matrix Multiplication (PDCGMM).

A. Contributions

Our solution to a generalized matrix multiplication algo-
rithm is to utilize a mix of a divide and conquer approach
and GPU computation to improve performance compared to
existing approaches. By dividing the matrices small enough
to fit into the available GPU memory and then leveraging
the multiple pipelines available, PDCGMM is able to vastly
increase the throughput of the operations needed to complete
the multiplication. Our major contributions are:

o Generalized algorithm to allow for scalability and utiliza-

tion across both sparse and dense matrices

o Partitioning Algorithm

— Scalable to large matrices
« Partitioning based on GPU Memory
e D&C Approach using CPU and GPU
— Recursive Partitioning on CPU
— Parallel multiplication and addition on GPU

II. RELATED WORK
A. Description & Baseline

The field of research surrounding matrix multiplication and
its practical optimizations is vast and has produced many
viable options for improving the algorithm’s time complexity
and runtime. This paper and its related work primarily deal
with Parallel Matrix Multiplication (PMM) and its areas for
improvement.

To establish a baseline for PMM strategies without the
division of matrices into blocks, a recent paper [13] per-
formed a series of experiments. These experiments compared
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Row First (RF), Column first (CF), Row by Row (RR), and
Matrix Transposing first (MT) algorithms using metrics of
speed, bandwidth, cache usage, and more. They found that
hyperthreading produced no appreciable benefit but that the
number of physical threads in a CPU greatly impacted the
acceleration of matrix multiplication through parallelism. Of
the four algorithm types explored, they concluded that MT had
the most potential for gain [13].

Arrigoni et al. [1] explored MT algorithms in the context
of multiplying a matrix by its transpose (A7 A or ATA). They
created their algorithm with the ability to be parallelized,
which has been shown to be essentially necessary for the use
of these algorithms in practical settings [13]. The algorithms,
which Arrigoni et al. called ATA, ATA-S, and ATA-D, were
all based on Strassen’s algorithm.

ATA-S is intended for multi-threaded machines and ATA-
D is intended for multi-processor machines. Runtime and
GFLOPs were calculated and compared against Inte]l MKL
dysrk and Intel MKL dgemm respectively. In both the time
and effective GFLOPs, the author’s implementations showed
improved performance. ATA-S and ATA-D decreased runtime
over their MKL counterparts. Additionally, ATA-D had signif-
icant speed up over ATA-S for larger matrices.

Arrigoni et al. [1] successfully parallelized their ATA algo-
rithm across different types of machines including distributed
and shared memory machines. The primary limitation of this
approach was its specific application to the case of a matrix
being multiplied by its transpose and didn’t clearly generalize
to other cases.

In contrast, Karstadt & Schwartz [6] sought to extend Bo-
drato’s intermediate representation method for matrix squaring
by supplying a basis transformation method to matrix multipli-
cation, effectively modifying multiplication by transpose. The
aim was to achieve a faster algorithm with the same base case
and time complexity as Strassen’s Algorithm by reducing the
leading coefficient from 6 to 5. They succeeded in improving
the communication and computation costs of a multitude of
fast matrix multiplication algorithms by a notable constant
factor. Their experiments showed that the sacrifice of slight
asymptotic overhead, regarding communication cost, was well
worth it to improve the arithmetic overhead via reduction of
the leading coefficient. This resulted in improved variations
of already existing fast matrix multiplication algorithms. The
common recursive-bilinear algorithm approach can be applied
up until a significantly small base case (typically 2x2), then
classical MM methods should be utilized as they produce more
computationally and temporally efficient solutions on smaller
matrices. While this approach is not entirely novel, as linear
transformations have been applied to matrix multiplication
before, the alternative basis algorithm reduces both cache
misses and communication overhead. This is the general
use-case that was missing from the experiments above [1].
Despite this achievement the algorithm does not fare well
on distributed systems. This leaves us with some commonly
observed themes throughout this work.

The ideas behind how existing literature outperforms the

baseline methods are twofold:

o Reducing communication cost with efficient element ac-
cess and workload distribution.

o Optimizing for specialized matrix structures and/or de-
grees of sparseness.

B. Communication Cost

One of the challenges associated with matrix multiplication
is the determination of how to access the elements of the
matrix in a way that utilizes a CPU (or GPU [12]) cache
architecture efficiently [13]. Another challenge inherent to
parallel matrix multiplication is the complexity of assigning
optimal workloads to multiple processing cores/threads [7].
Collectively, this can be thought of as the communication cost
of matrix multiplication and its parallelization.

In 2021 Liao, Li, et al. evaluated standard methods of PMM
as well as Strassen methods in their paper [8]. Their findings
did not support any one general approach over another in
all situations. Their findings did lead them to conclude that
communication is the most important challenge in PMM today.
They suggested that a bottom up approach to PMM may
improve time-to-complete by minimizing communications.

Kwasniewski, Kabic, et al. did just that in their paper [7].
Using a computational directed acyclic graph they were able
to establish a theoretical tight lower bound on communication.
Then, by applying the Red-Blue pebble game they were able to
divide the work to be done nearly I/O optimal before assigning
it to individual processors. This is the bottom up approach
Liao, Li, et al. mentioned in their paper [8].

Another improvement on the communication issue plaguing
parallel matrix multiplication (PMM) is through the use of
loop unrolling and Compressed Sparse Row (CSR) opti-
mization. To improve the performance of the Sparse Dense
Matrix Multiplications (SpDM), Soliman et al., looked at
loop unrolling optimization and parallel processor application
[10]. The authors achieved parallel processing with a shared
memory model while employing the following optimization
techniques: Compressed sparse row optimization and Multi-
threaded Intel math kernel Library (MKL). The CSR algo-
rithm was utilized to enable increased memory efficiency and
improved rate of cache hits while MKL was utilized for it’s
enhancement of memory allocation as well as the added benefit
of its memory alignment routines. The novelty of this approach
is that Peano Curves allows for a cache oblivious method to
tackling SpDM by reducing cache miss rates.

Comparisons were made utilizing both sparse and dense
matrices sans data compression and code optimizations; es-
sentially naive versions of each. The results were measured
via a three-stage method. Firstly, the CSR method was applied
across a sparse matrix. Secondly, the authors applied the loop
unrolling technique for optimization (LUTO). Lastly, they
applied MKL method for increased cache hit rate. Execution
times were measured after each successive method applica-
tion. Blending CSR and loop unrolling improved application
parallelism and led to an 86% decrease in execution time
over standard naive methods. The CSR is a 50% improvement
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over Peano Curve patterning due the fact that the Peano
Curves are data reliant while CSR strictly focuses on cache
miss reduction. Unfortunately, finding the sweet spot for the
unrolling factor is problematic as a high unrolling factor
can lead to an even higher incidence of cache misses, even
more than not utilizing the unrolling algorithm at all. In fact,
code unrolling and code optimizations, alone, did not lead to
large improvements in execution time. These were largely a
factor of CSR via reduction of cache misses. In the end, loop
unrolling through Peano curves has some limited benefits in
very specific use-cases but does not generalize well.

To improve utilization of CPU and GPU cache, Hong,
Sukumaran-Rajam, et al. made the Adaptive Sparse-matrix
Tiling (ASpT) algorithm to break matrices into rows, then
make the rows into 2D tiles [3]. The algorithms worked best on
dense matrix by sparse matrix multiplication, and dense times
dense scaled by a sparse. The results showed the ASpT method
was better than other existing ones. If there were significant
amounts non-zero values, data could be reused through the
cache. The downsides to this approach are that there is an
overhead for tiling the matrices and the lack of reusing cache
for sparse matrices [3].

C. Matrix Structures & Sparsity

Some of the most promising improvements in the time
complexity and runtime of matrix multiplication have been
produced by forgoing the concept of generalization and in-
stead focusing on optimizing for specific matrix structures
or degrees of sparseness. One common example is Strassen’s
Algorithm, which achieves a time complexity of O(n!°927),
but only for multiplying dense matrices [11].

Hossain and Mahmud [4] utilized diagonally structured
matrices to perform matrix multiplication and matrix vector
multiplication, which can be thought of as matrix multiplica-
tion where the second matrix has only one column. Their paper
showed how specialized structures of dense matrices, such as
banded and triangular matrices, could be represented using
their diagonals to provide efficient cache usage and reduced
storage requirements. They devised a novel scheme for storing
matrices using their diagonals inside a one-dimensional array
when the nonzero elements are densely packed.

The novelty of this approach is that previous storage
schemes utilized a two-dimensional array to store the diago-
nals with padded, non-referenced elements filling in the miss-
ing space for shorter diagonals, whereas this paper presented
a one-dimensional alternative that doesn’t require padding.
They tested their matrix multiplication algorithm on multiple
bandwidths with matrix dimension n = 100000 and 2 to
16 threads. The results indicate that as the bandwidth of the
matrices increase, the speedup and efficiency of the algorithm
increases with peak values around a bandwidth of 1600. Also,
as the number of threads increases, the speedup increases
drastically while the efficiency drops relatively slowly. This
shows that their algorithm using diagonal matrix structuring
performs well when parallelizing the independent diagonal
calculations and scales efficiently as the bandwidth increases.

The primary advantage of this approach was the ability
to store these specific types of matrices in a scheme that is
both space-efficient and provides stride-1 access to the matrix
elements without any form of indirect referencing [4]. The
limitation of this storage scheme is that it doesn’t apply to
matrices that do not have well defined nonzero diagonals. In
these cases where the algorithm cannot take advantage of only
storing the nonzero elements, the storage scheme must store
all of the diagonals of the matrices. It cannot miss any nonzero
elements that may be scattered throughout the matrices. This
also presents an issue during parallelization of the algorithm
since dividing a matrix into smaller matrices or blocks may
not provide the same structure.

Another paper [12] re-examines the belief that naive im-
plementations of sparse matrix vector multiplication (SpMV)
cannot achieve the same performance as more complex, state
of the art implementations when parallelized. The authors im-
plemented naive algorithms for both SpMV and the transpose
multiplication case (SpMVT). They utilized the compressed
sparse rows (CSR) format for a matrix to force elements in the
same row of a matrix to be stored consecutively in memory for
lower cache communication costs. The authors also developed
the parallel versions of these two algorithms by parallelizing
the loop that is operating over all of the matrix rows.

The novelty of this paper is not the parallel implementa-
tions of matrix vector multiplication themselves, but rather
the evaluation of these naive algorithms compared to more
state of the art implementations on modern GPU hardware,
which could provide counterintuitive results due to atomic
operations being supported directly in hardware and superior
cache performance. This paper is novel in that it suggests
elements of naive matrix multiplication could provide better
runtime performance for GPU-based SpMV.

The authors compared their naive algorithms with state of
the art algorithms (cuSparse, CUSP, and bhSparse) on a variety
of matrix sizes and densities. The naive approach and CUSP
achieved the best performance in five tests, cuSparse in three
tests, and bhSparse in one. The naive implementations showed
their best performance with large matrices that have very few
nonzero elements that are distributed uniformly. The authors
found that the naive approach can outperform more compli-
cated algorithms when under these specific matrix conditions,
even when not accounting for the conversion costs. When
the matrices are less regular, the state of the art algorithms
performed far better.

The advantages of this naive approach are the elimination
of format conversion overhead required for state of the art
implementations and better performance with large, regular
matrices. In terms of time complexity, the conversion overhead
presents itself as an increase in the constant factor.

Overhead reduction is especially important when a matrix
is only used for one matrix vector multiplication operation
because the costs cannot be amortized. The limitation of this
approach is that it doesn’t generate as many uniform workloads
as other state of the art algorithms when working with smaller,
less regular matrices due to load imbalances and divergence.
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D. Generalized Matrix Multiplication

A problem found in many matrix multiplication implemen-
tations is the inability to be efficient for sparse and dense
matrices alike. Rasouli et al. [9] applied parallel D&C tech-
niques to the general matrix to matrix multiplication (GEMM)
algorithm. Additionally, they introduced new methods for
data compression of matrices and overlapping communication.
The overlapping communication allows for parallelization by
computing matrix multiplication as the divide and conquer
recursion takes place. Through experiments, they concluded
their recursive GEMM algorithm has approximately 2.2 times
speed up over the Portable Extensible Toolkit for Scientific
Computation’s (PETSc) implementation [9]. Extensive exper-
iments over varying sized and types of matrices proved that
their GEMM algorithm effectively computes matrix multipli-
cation despite the level of density. In addition to efficiency
over sparse and dense matrices, a novelty of the authors’ work
was the compression method they designed, based on Golomb-
Rice encoding, to reduce communication cost. The greatest
limitation of their work is that the recursive GEMM algorithm
fails to perform well for diagonal matrices due to the recursive
nature of their GEMM implementation. PETSc accounts for
this specific case, therefore, it performs better compared to the
authors’ algorithm. [9]

ITII. OUR APPROACH

This section details our approach to creating PDCGMM, a
parallel D&C implementation of matrix multiplication.

A. Definitions

TABLE I
NOTATIONS

Meaning

A First Matrix

B Second Matrix

C Resultant Matrix from AB

m Number of rows in A

n Number of columns in A, Number of rows in B
P Number of columns in B

c Number of cores in a machine

pt Partitioning threshold

0 Matrix filled with all zeroes (Zero matrix)

b Number of total available bytes of memory
parfor  For-loop executed in parallel

B. Fartitioning Threshold

PDCGMM divides A and B into matrices with smaller di-
mensions using block partitioning. This reduces cache storage
requirements because there are fewer elements to store and
access in smaller matrices.

By reducing matrix dimensions, communication costs in-
curred by cache misses and slow memory accesses will be
reduced.

A and B will be considered sufficiently partitioned when
m < c. The intention of this partitioning threshold is to divide
A until the CPU can run all m row calculations in parallel.
In other words, the CPU will assign one core to each row of

A and perform a dot product of that row and each column of
B.

Given A,,x, and ¢, the following values can be calculated:
The total number of partitions performed, P:

0, ifm<ec
1+ P(m,|5],c), ifm>candm<n
L+ P([3]n,0),

P(m,n,c) =

if m>cand m>n
The number of times m is partitioned, P,,:

P ) 0, itm <e
m\, C) = .
L+ Pu(l%],c), ifm>c

The number of times n is partitioned, P,:

0, ifm<e
1+ Py(m,|5],c), if m>candm<n
Po([5 ], 0),

The number of rows after partitioning, mp:

P,(m,n,c) =

ifm>cand m>n

- m
me = LQPm(m,c) J

The number of columns after partitioning, np:

- n
np = \‘QPn(m,n,c)J

1) GPU-based Fartitioning: The partitioning described
above focuses on optimizing the partitioning threshold for
matrix multiplication on a CPU. PDCGMM also considers
a partitioning threshold for GPU-based matrix multiplication.
Modern GPUs can perform parallel computing of simple
operations far more quickly than the CPU because of their
hundreds or even thousands of processing cores.

The primary concern for performing matrix multiplication
on a GPU is the storage of the matrices in the GPU’s rela-
tively limited memory. This memory limitation is handled by
PDCGMM through the use of block partitioning to perform the
matrix multiplication on smaller submatrices. Our partitioning
threshold takes into account the amount of GPU memory
available and partitions A and B until the submatrices are
small enough to fit entirely on the GPU.

Given a GPU that can store b bytes and matrix elements of
type double-precision floating-point (float64), the maximum
number of rows in A and B that can be stored is:

/8

In terms of our algorithm’s base case and partitioning
threshold parameterized with m:

=

3
IN
ofS
~
o0
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C. Farallel D&C Matrix Multiplication

. Lo . Algorithm 2: Partition(A, B, m, n, p, pt)
In PDCGMM, A,, x,, will be multiplied with B,,,, produc-

ing Crpxp- .
PDCGMM recursively divides A and B into submatrices pe. .
) NOE T ‘ o Output: Resultant Matrix Cp,xp
until m < ~5—. Partitioning is halted and matrix multiplica- | jf s, <, then // Case 1

tion is performed on the subproblem. The submatrices will be  , (A1, Ay) «SplitColumns(A, m, n)
small enough for the GPU to process each row in parallel. 3 (By, By) «SplitRows(B, n, p)
: : 4 C «MatrixMultiply (A1, By, m, [ 5], p, pt)+

Algorithm 1: MatrixMultiply(A, B, m, n, p, pt) 5 MatrixMultiply(As, By, m, [%], p, pt)

Input: Matrices A, xn, Bnxp. Partitioning threshold, 6 return C'

pt. 7else // m>n - Case 2

Output: Resultant Matrix Ciy,xp 8 (A1, Ag) <SplitRows(A, m, n)
1 if m < pt then // Base Case 9 (B1, B2) «-SplitColumns(B, n, p)
2 C < Opmxp 10 Cy +MatrixMultiply (A1, By, [ %], n, | 5], pt)
3 parfor i = 0 to m do 11 Cs +MatrixMultiply (A1, Bo, | % |, n, [51, pt)
4 for j =0 to p do 12 C3 <MatrixMultiply(Az, By, [ 5], n, [ 5], pt)
5 for k =0to n do 13 Cy <MatrixMultiply(As, Bo, [ 5], n, [5], pt)
6 ‘ Cij « Cyj + Ayi, * By 14 C12 +AppendHorizontal (Cy, Cs)
7 return C 15 C'34 +AppendHorizontal(C3, Cy)
8 return Partition(A, B, m, n, p, pt) 16 C' +AppendVertical (Cy2, C34)

17 return C'

Input: Matrices A, xn, Bnxp. Partitioning threshold,

Our partitioning algorithm has two cases:
Case 1: m<n

A will be split in half by its columns into (A;, As).

B will be split in half by its rows into (By, Bs). Algorithm 3: SplitColumns(A, row, col)

Input: Matrix M, oy xcol

A = [Al l AQ:I B = gl OutplIt: MatriCGS M17‘ow><[col/2j and MQrowx(col/?'l
2 1 Ml — 0row><[col/2j
C will be calculated as Ay B; + A Bs. 2 M2 < Opowx[eol/2]
3 MyColumns = |col /2|
C = [A1B1+ 4;B)] 4 MyColumns = [col /2]
Case 2: m >n 5 for : = 0 to col do
A will be split in half by its rows into (Aj, As). 6 if i < M;Columns then
B will be split in half by its columns into (B, Bs). 7 ‘ My, < M,
A, 8 else
A:{E}B:[BJBQ} o | | My,

—
=)

return (M, M>)

C will be calculated as the appending of four matrices:

Cy=A1By, Cy = A1 By,
C3 = AsBq, Cy = Ay Bs.

Algorithm 4: SplitRows(M, row, col)

C = [AlBl l A1B2—| o [Cl l 02-| - |7012-| - {Clz} Input: Matrix Mo x col
T [AeBy | A3By| T |Cs | Cu] T [Caa] T LTss Output: Matrices My, ., and My ..
L. . 1 My «+ OLrow/Qchol
D. Splitting a Matrix 2 Mo < Orouw/2xcol
E. Lemmas 3 MiRows = |row/2]

4 MyRows = [row/2]

Lemma 3.1: For any two matrices A and B that are known to .
5 for i =0 to col do

have valid dimensions for multiplication, the partitioned matri-

ces Ay, Ay will also have valid dimensions for multiplication ¢ for J = 0 to row do

with partitioned matrices By, Bs. 7 if j < My Rows then
Proof. Given A and B, the matrix multiplication operation ~ ® ‘ My, = My

AB can only be performed if the number of columns in A ? else

and number of rows in B are equal. 10 | My, M

Assume that A and B have valid dimensions for matrix 1! Feturn (M, My)

multiplication. Let m x n represent the dimensions of A, and
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n X p represent the dimensions of B.
There are two cases for partitioning.

e Case : m<n
A will be split in half by column producing A; and A,
with dimensions m x [n/2] and m X [n/2] respectively.
B will be split in half by row producing B; and B;
with dimensions [n/2] x p and [n/2] x p respectively.

In this case of partitioning, A;B; and AsBs are
required matrix multiplications.

Therefore, A; must have valid dimensions with B; and
As must have valid dimensions with Bs.

A; and B; have the same inner dimensions |n/2]
and A, and Bs have the same inner dimensions [n/2].

Therefore, the matrix multiplications A;B; and
Ao Bs can be performed and A, As, By, and Bs have
valid dimensions for Case 1.

e Case2:m>n
A is split by its rows and B is split by its columns.
This leaves the “inner” dimension n for both matrices
unaffected.

Therefore the validity of the submatrices’ dimensions
with respect to matrix multiplication is maintained.

A; and A, will both have n columns and B; and
Bs will both have n rows so matrix multiplication
between any A submatrix and B submatrix will be valid.

All required matrix multiplications can be performed
with the partitioned matrices Ay, A3, By, and Bs for
Case 2.

For both cases of partitioning, Ay, Ao, By, and By have valid
dimensions for the required matrix multiplications. Therefore,
PDCGMM provides valid submatrices for matrix multiplica-
tion of A and B.

Lemma 3.2: For any two matrices A and B, that are known
to be valid for multiplication, the partitioned matrices D, E,
F, & G will also be qualitatively valid while maintaining
dimensional rules for matrix multiplication.

Proof. Suppose we have matrices A and B such that:

Ar A 1
A=Ay Al B= {gl e B
As  Ag 4 5 6
Further suppose that A and B have been partitioned into
submatrices D, E, F', and G.
Di D Fy F3
Ds Dy| B= [ noF
B B 2 Iy

G|

A= G

This yields:

{DlaD27D3aD4} & {E17E2}€A
{F\,F>,F3,Fy} & {G1,G2} € B

where,

D2X2F2><2 — (DF)2><2
E1x2G2><1 — (EG)lxl

Therefore:

D-FT ={DyF, + DyFs + D3F5 + DyFy}
E-G" = {E,G + E2G5}
A-BT = {A1B1 + A3By + A3Bs + AyBy + AsBs + A Bg}

DiFy +DyFy = A1 By + Ay By
D3F3 + DyFy = A3Bs + AyBy
FE1G1 + EoGo = AsBs + AgBg

By the law of associative addition:

DFT + EGT = ABT

DFEG = AB
Matrix Dimensions:
DFEG=3x3
AB=3x3 V

IV. EXPERIMENT

A. Setup

We tested PDCGMM using a single workstation with spec-
ifications detailed in Table 2. PDCGMM was implemented
in Python using the CuPy library to facilitate processing on
the GPU through the Compute Unified Device Architecture
(CUDA). Specifically, we implemented Algorithm 1 with
pt now representing a given partitioning threshold for the
GPU (described in 3.2.1) and Algorithm 2 as two different
partitioning functions depending on where the matrices are
currently being stored and manipulated, CPU or GPU.

Data was gathered by running PDCGMM and the NumPy
implementation of matrix multiplication using Basic Lin-
ear Algebra Subprograms (BLAS) across a number of pre-
generated matrices. For each test, the execution time of both
algorithms were measured 10 times.

TABLE II
MACHINE SPECIFICATIONS

CPU Intel i5-9600k @ 4.8GHz
GPU Nvidia GPU GTX 1660 Super
GPU Memory 6GB
Sys. Memory 16GB
oS Windows 10
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TABLE III
TEST MATRIX INFO FROM SSMC.
D Name Rows Columns  Density
S1 besstk17 10,974 10,974 0.36%
S2 exl1 16,614 16,614 0.40%
S3 gupta3 16,783 16,783 3.31%
S4  human_genel 22,283 22,283 4.97%
S5  human_gene2 14,340 14,340 8.79%
TABLE IV
SYNTHESIZED DENSE MATRICES.
ID Rows Columns
D1 10,974 10,974
D2 16,614 16,614
D3 16,783 16,783
D4 22,283 22,283
D5 14,340 14,340

B. Data-Sets

Sparse matrices were collected from the SuiteSparse Matrix
Collection (SSMC) and are detailed in Table 3 [2]. We chose
these specific sparse matrices because they are typically used
in other literature. They range from 10,000 to 20,000 rows
and columns. A 10,000 squared matrix is used for the lower
bound of data-sets because it is the largest that can fully fit
on our GPU without partitioning. Any smaller and the results
would be too small for comparison. A 20,000 squared matrix
is the upper bound because larger matrices took significantly
longer with the NumPy approach and made our results difficult
to observe. Dense matrices were randomly generated prior to
testing and are detailed in Table 4. The dense matrices were
generated to be the same size as the SSMC data-sets for proper
comparison. For our purposes, we define density as:

# of non-zeros
Rows * Columns

A matrix with a greater density has more non-zero elements
and sparse matrix formats, such as CSR, become less useful.
Table 4 details the dimensions of the generated dense matrices.
As stated before, these matrices are 100% dense. Therefore
they only contain non-zero elements.

C. Results and Discussion

Tables 5 and 6 detail the results from our experiments. After
running PDCGMM and NumPy matrix multiplication over
sparse and dense matrices 10 times each, we calculated the
average run time of each algorithm and annotated this time (in
seconds) in Tables 5 (sparse matrices) and 6 (dense matrices).
Based on these run times, we calculated and annotated the
speed up of PDCGMM over NumPy.

PDCGMM performed significantly faster than NumPy for
matrices S1 and D1 in particular. This performance increase

TABLE V
EXECUTION TIME ON SPARSE MATRICES

ID PDCGMM NumPy Speedup
S1 0.166s 11.477s 69.139
S2 6.649s 36.533s 5.495
S3 6.952s 39.395s 5.667
S4 21.433s 103.592s 4.833
S5 4.466s 26.380s 5.907
TABLE VI
EXECUTION TIME ON DENSE MATRICES
ID PDCGMM NumPy Speedup
D1 0.142s 12.999s 91.542
D2 6.901s 39.349s 5.702
D3 7.057s 39.943s 5.660
D4 20.928s 104.327s 4.985
D5 4.368s 26.489s 6.064

can be attributed to the fact that the matrices were small
enough to be stored entirely on the GPU and matrix multi-
plication was performed without any partitioning.

GPU Memory: 6GB = 6,000, 000,000 bytes
/6,000, 000, 000/8
2

This partitioning threshold represents how many rows two
square matrices can have and still be stored on 6GB of
memory. S1 and D1 were the only matrices tested that had less
than 13,693 rows so no communication costs were incurred
by moving the matrices to and from the CPU during parti-
tioning. When the matrix fit entirely with the GPU’s memory,
PDCGMM performed 69 times faster than NumPy’s built-in
matrix multiplier for a sparse matrix and 92 times faster for a
dense matrix.

This is not a surprising result as much of the overhead
of PDCGMM comes from sending data from the CPU to
the GPU. Larger matrices provide more realistic comparative
results where matrices are too large to be stored and computed
entirely on the GPU.

On sparse matrices, PDCGMM achieved results between
4.833 and 5.907 times faster than NumPy. Results were similar
for dense matrices with speed-ups between 4.985 and 6.064
times. Figure 1 visually organizes our results and performance
improvement over NumPy. PDCGMM outperformed the well
established algorithms used by numPy in every test by taking
advantage of the numerous CUDA cores and threads present
in most computers with modern GPUs.

The performance of PDCGMM was almost indistinguish-
able across sparse and dense matrices, demonstrating potential
as a generalized matrix multiplication algorithm. This density-
oblivious property is important for matrix multiplication algo-

Partitioning Threshold: ~ 13,693 rows
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Fig. 1. Graph comparing running time results of dense/sparse matrices of
PDCGMM vs NumPy.

rithms that utilize block partitioning since blocks may have
widely different densities.

D. Comparative Results

Ishiguro et al. evaluated the performance increase from
utilizing the GPU compared to using the CPU in sparse matrix
- sparse matrix multiplication (SpMxSpM) and sparse matrix
- dense matrix multiplication (SpMM) [5]. In particular, their
GPU-based matrix multiplication algorithm achieved a 3.24x
speedup for SpMxSpM and a maximum speedup of 8.44x
for SpMM compared a CPU-based implementation. However,
their experiments had a maximum matrix size of 10,000 x
10,000 while our experiments tested matrices with double that
size.

As stated previously, PDCGMM performed about 5 to
6 times faster than the CPU-based NumPy implementation
when the matrices were too large to fit on the GPU. When
considering matrices that could fit entirely on GPU memory,
matrix S1 (Table 3) had dimensions around 11,000 x 11,000
and had a speedup of 70 to 90 times over NumPy, which
far surpasses the maximum speedup Ishiguro et al. achieved.
In terms of execution time, PDCGMM also performed much
faster with an execution time of 0.142 to 0.166 seconds (Tables
5 & 6) on matrix S1, whereas their algorithm took around 50
seconds for a 10,000 x 10,000 matrix [5]. Even for matrix S4
(22,283 x 22,283), PDCGMM only took 20.928 seconds.

This execution time difference cannot be explained as the
result of hardware limitations since Ishiguro et al. utilized two
NVIDIA Tesla P100 GPUs, which operate at 4.7 teraflops
(TFLOPS) when operating on double-precision floating-point
numbers. This exceeds our machine’s GPU (Table 2) perfor-
mance of 157 gigaflops (GFLOPS) for double-precision floats
by about 30 times.

V. CONCLUSION

We developed PDCGMM to be a D&C approach and
CUDA-based parallel implementation for generalized matrix
multiplication to improve performance and scalability for both

sparse and dense matrix multiplication. PDCGMM scales
effectively due to our partitioning scheme, which breaks up
the matrices to fit on the GPU without running out of memory
which allows PDCGMM to take advantage of the parallel
performance of the GPU. PDCGMM performed better than
existing work but is not fully optimized for sparse matrices
which could be compressed for better performance and scala-
bility.

For future work, the partitioning algorithm of PDCGMM
could be improved. For smaller matrix sizes that are below
the partitioning threshold, they can be directly sent to the GPU
for matrix multiplication. Larger matrices above this threshold
must be broken down by the CPU and sent to the GPU in
blocks. Further improvements to the partition algorithm could
limit the overhead from communication between the CPU
and GPU by taking advantage of shared memory, reducing
runtimes significantly.
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