Competitive
Racing with
Proximal Policy
Optimization

Problem Statement

Related Work and Background

Introduction

Approach

Evaluation Procedure

Results

Conclusions and Future Work

Motivation

- Racing sports often involve strategies for reducing wind resistance
 - "Slipstream" Effect
 - Reduced Energy Expenditure
 - Improved Efficiency
- Competitive/cooperative strategies emerge
 - When should you lead/draft?
 - Should you work alone or as a team?

Problem Statement

- Can agents learn to compete in a racing game?
 - Simulate the effects of drafting in a racing environment
 - Train agents to race with other agents (MARL)
 - Encourage competitive/cooperative racing
 - Evaluate the emergent strategies

Proximal Policy Optimization (PPO)

Limit policy updates by clipping changes in the policy

$$L_t^{CLIP+VF+S}(\theta) = \hat{E}_t[L_t^{CLIP}(\theta) - c_1 L_t^{VF}(\theta) + c_2 S[\pi_{\theta}](s_t)]$$

Multi-Agent Reinforcement Learning (MARL)

- Markov/Stochastic game
- Fully decentralized setting
- Partially observed model
- Homogeneous Agents

Approach

Map Generation

- Where are the agents going to race?
- Idea: Use GPS data in the form of .gpx files
 - Establish "waypoints" based on longitude/latitude
 - Define boundaries of the road as polygons for detecting collisions

Environment Definition

- Map State:
 - 800x800 grid
 - Walls, Waypoint Segments
- Agent State:
 - Position (x, y)
 - Speed [0,200]
 - Heading $[-\pi, +\pi]$
 - Waypoint
- Actions:
 - Steer
 - Throttle
- Agent Observation:
 - 64x64x3 image centered on agent
 - Frame-stacking 3 frames
 - Ego Perspective

PPO Implementation

Algorithm 1 PPO-Clip

- 1: Input: initial policy parameters θ_0 , initial value function parameters ϕ_0
- 2: **for** k = 0, 1, 2, ... **do**
- 3: Collect set of trajectories $\mathcal{D}_k = \{\tau_i\}$ by running policy $\pi_k = \pi(\theta_k)$ in the environment.
- 4: Compute rewards-to-go \hat{R}_t .
- 5: Compute advantage estimates, \hat{A}_t (using any method of advantage estimation) based on the current value function V_{ϕ_k} .
- 6: Update the policy by maximizing the PPO-Clip objective:

$$\theta_{k+1} = \arg\max_{\theta} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^{T} \min\left(\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_k}(a_t|s_t)} A^{\pi_{\theta_k}}(s_t, a_t), \ g(\epsilon, A^{\pi_{\theta_k}}(s_t, a_t))\right),$$

typically via stochastic gradient ascent with Adam.

7: Fit value function by regression on mean-squared error:

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_t} \sum_{t=0}^{T} \left(V_{\phi}(s_t) - \hat{R}_t \right)^2,$$

typically via some gradient descent algorithm.

8: end for

"Nature" CNN

Input: 64x64x3

Hidden Layer 1

• 32 filters (8x8), stride = 4

Hidden Layer 2

• 64 filters (4x4), stride = 2

Hidden Layer 3

• 64 filters (3x3), stride = 1

Hidden Layer 4

- Fully Connected
- 512 units

Output Layer:

- Gaussian Distribution (mean, std. dev) of action values
- Steering & Throttle

Single Agent

- Checking for "signs of life"
- Can the agent learn to navigate a map?
- Rewards:
 - -0.01 for every timestep
 - +5 for each waypoint
 - +100 for reaching last waypoint
 - -1 for colliding with wall
 - -50 for out of bounds (edge case)

Multi-Agent (No Drafting)

- What happens when two agents are put in the same map?
- Double the reward for being "first"
- Agents can collide with each other
- Race against yourself for ~10,000 timesteps
 - Improve as much as possible
 - Update the opponent for next training session
- Reward Changes:
 - +5 for each waypoint while first
 - +2.5 for each waypoint while behind

Multi-Agent (Drafting)

- How can agents utilize drafting to compete or cooperate?
- Drafting effect when behind another agent
 - Must be within 30 units
 - Velocity increase by a factor of 1.1

Evaluation Procedure

- Run PPO for each scenario
 - TensorBoard Logging
- Metrics
 - Mean Reward & Episode Length
 - Loss Function Value (Training Only)
- Training (Rollout)
 - Running Average over last 100 episodes
- Evaluation
 - Every 10,000 timesteps
 - Save model and evaluate over 20 episodes

Rollout Results

Evaluation Results

Loss Results

Conclusions

- PPO can train agents to navigate, race, and cooperate (sort of)
- MARL & MDRL is complex
 - Self-play is too simple
 - Independent and decentralized agents are limited
- Reward shaping is important
 - Sparse/delayed rewards makes learning difficult
- Training collapses are difficult to avoid with on-policy methods
 - Catastrophic forgetting

Future Work

Complex State Representation

Hyperparameter Tuning

Multi-Agent Teams

Information
Sharing Network

Fictitious
Self-play

Algorithm Comparison

Appendix - Hyperparameters

Hyperparameter	Value
Learning Rate	0.0003
Number of Steps Per Update (Batch Size)	4096
Minibatch Size	1024
Gamma	0.99
Clipping Range ($arepsilon$)	0.2
Value Function Loss Coefficient	0.5
Entropy Loss Coefficient	0.01

$$L_t^{CLIP+VF+S}(\theta) = \hat{E}_t[L_t^{CLIP}(\theta) - c_1 L_t^{VF}(\theta) + c_2 S[\pi_{\theta}](s_t)]$$

Appendix – 10 Agents Demo

https://www.youtube.com/watch?v=u048982E9OE

